IniziaInizia gratis

GARCH(1,1) reaction to one-off shocks

The GARCH approach models the variance using the prediction errors \(e_t\) (also called shocks or unexpected returns). The parameter \(\alpha\) determines the reactivity to \(e_t^2\) , while \(\beta\) is the weight on the previous variance prediction.

In this exercise, we consider the series of squared prediction errors e2 <- c(10,25,rep(10,20)). We plot the variance for:

  • \(\alpha=0.1\) and \(\beta=0.8\)
  • \(\alpha=0.19\) and \(\beta=0.8\)
  • \(\alpha=0.1\) and \(\beta=0.89\).

We set \(\omega\) such that the long term variance is 10.


Which statement about the effect of the shock on the variance is wrong?

Questo esercizio fa parte del corso

GARCH Models in R

Visualizza il corso

Esercizio pratico interattivo

Passa dalla teoria alla pratica con uno dei nostri esercizi interattivi

Inizia esercizio