IniziaInizia gratis

PDF document loaders

To begin implementing Retrieval Augmented Generation (RAG), you'll first need to load the documents that the model will access. These documents can come from a variety of sources, and LangChain supports document loaders for many of them.

In this exercise, you'll use a document loader to load a PDF document containing the paper, RAG VS Fine-Tuning: Pipelines, Tradeoffs, and a Case Study on Agriculture by Balaguer et al. (2024).

Note: pypdf, a dependency for loading PDF documents in LangChain, has already been installed for you.

Questo esercizio fa parte del corso

Developing LLM Applications with LangChain

Visualizza il corso

Istruzioni dell'esercizio

  • Import the appropriate class for loading PDF documents in LangChain.
  • Create a document loader for the 'rag_vs_fine_tuning.pdf' document, which is available in the current directory.
  • Load the document into memory to view the contents of the first document, or page.

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Import library
from langchain_community.document_loaders import ____

# Create a document loader for rag_vs_fine_tuning.pdf
loader = ____

# Load the document
data = ____
print(data[0])
Modifica ed esegui il codice