IniziaInizia gratis

Registering the model

The final step is to register and log the fitted model using MLflow. This allows you to track and version your models for production deployment.

The datetime, mlflow, mlforecast.flavor packages, and the fitted mlf model are preloaded for you.

Questo esercizio fa parte del corso

Designing Forecasting Pipelines for Production

Visualizza il corso

Istruzioni dell'esercizio

  • Set the run_name using the current timestamp created for you in the run_time variable.
  • Use mlflow.start_run() to start a run with the specified experiment ID.
  • Log the model using the right method.

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

experiment_name = "ml_forecast"
try:
    mlflow.create_experiment(name=experiment_name)
    meta = mlflow.get_experiment_by_name(experiment_name)
    print(f"Setting a new experiment {experiment_name}")
except:
    print(f"Experiment {experiment_name} exists, pulling the metadata")
    meta = mlflow.get_experiment_by_name(experiment_name)

# Setup the run name and time
run_time = datetime.datetime.now().strftime("%Y-%m-%d %H-%M-%S")
run_name = f"lightGBM6_{____}"

# Start the run
with mlflow.____(experiment_id=meta.experiment_id, run_name=run_name) as run:
    # Log the model
    mlforecast.flavor.____(model=mlf, artifact_path="prod_model")
    print(f"MLflow Run created - Name: {run_name}, ID: {run.info.run_id}")
Modifica ed esegui il codice