Fitting the model
Now that your model and parameters are ready, you'll initialize MLForecast and fit it to the time series data.
The model and params variables from the previous exercise are available, along with the ts DataFrame.
Questo esercizio fa parte del corso
Designing Forecasting Pipelines for Production
Istruzioni dell'esercizio
- Create an
MLForecastinstance namedmlf. - Set the
freq,lags, anddate_featuresarguments using the respective keys from theparamsdictionary. - Fit the model to the
tsDataFrame.
Esercizio pratico interattivo
Prova a risolvere questo esercizio completando il codice di esempio.
# Create an MLForecast instance
mlf = ____(
# Set the freq, lags, and date_features arguments
models=model,
freq=params["____"],
lags=params["____"],
date_features=params["____"]
)
# Fit mlf to the time series data
mlf.fit(____)