IniziaInizia gratis

Defining the forecasting pipeline

Now you'll define the forecasting model and parameters for the MLForecast pipeline. This step prepares the model configuration that will be used for time series forecasting in the pipeline.

Questo esercizio fa parte del corso

Designing Forecasting Pipelines for Production

Visualizza il corso

Istruzioni dell'esercizio

  • Import LGBMRegressor from lightgbm.
  • Instantiate a LGBMRegressor model with 100 estimators and a learning rate of 0.05.
  • Create a dictionary named params that includes the frequency ("h"), lags (1-24), and date features ("month", "day", "dayofweek", "week", and "hour").

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Import LGBMRegressor from lightgbm
from ____ import ____

# Instantiate the model
model = ____(n_estimators=____, learning_rate=____)

# Set the model parameters
params = {
  "freq": "____",
  "lags": list(range(____, ____)),
  "date_features": ["month", "day", "____", "____", "hour"]
}
Modifica ed esegui il codice