Defining the forecasting pipeline
Now you'll define the forecasting model and parameters for the MLForecast pipeline. This step prepares the model configuration that will be used for time series forecasting in the pipeline.
Questo esercizio fa parte del corso
Designing Forecasting Pipelines for Production
Istruzioni dell'esercizio
- Import
LGBMRegressorfromlightgbm. - Instantiate a
LGBMRegressormodel with100estimators and a learning rate of0.05. - Create a dictionary named
paramsthat includes the frequency ("h"), lags (1-24), and date features ("month","day","dayofweek","week", and"hour").
Esercizio pratico interattivo
Prova a risolvere questo esercizio completando il codice di esempio.
# Import LGBMRegressor from lightgbm
from ____ import ____
# Instantiate the model
model = ____(n_estimators=____, learning_rate=____)
# Set the model parameters
params = {
"freq": "____",
"lags": list(range(____, ____)),
"date_features": ["month", "day", "____", "____", "hour"]
}