Setting up the DAG
Orchestration tools such as Apache Airflow are essential for automating data and machine learning workflows.
In this exercise, you'll begin setting up a Directed Acyclic Graph (DAG) by importing the required classes and configuring default arguments that define how your pipeline will run.
Questo esercizio fa parte del corso
Designing Forecasting Pipelines for Production
Istruzioni dell'esercizio
- Import the
DAGandPythonOperatorclasses from Airflow. - Set the start date as 7th July, 2025.
- Set
email_on_failuretoFalse.
Esercizio pratico interattivo
Prova a risolvere questo esercizio completando il codice di esempio.
# Import required classes
from airflow import ____
from airflow.providers.standard.operators.python import ____
from datetime import datetime
default_args = {
'owner': 'airflow',
# Define the arguments
'depends_on_past': False,
'start_date': datetime(____),
'email_on_failure': ____}
print(f"DAG configured to start on {default_args['start_date']}")