IniziaInizia gratis

Forecast evaluation & experimentation

In this exercise, you'll evaluate the forecast model's performance to explore the use cases of experimentation.

The merged forecast (fc), combining predictions with actual test results, is preloaded. Evaluation functions (mape, rmse, coverage) and pandas (as pd) are also ready for use. Here's a quick reference for the functions:

def mape(y, yhat):
    mape = mean(abs(y - yhat) / y) 
    return mape

def rmse(y, yhat):
    rmse = (mean((y - yhat) ** 2)) ** 0.5
    return rmse

def coverage(y, lower, upper):
    coverage = sum((y <= upper) & (y >= lower)) / len(y)
    return coverage

First, compute performance metrics for the model. Then, answer a question about the goals of experimentation in forecasting.

Questo esercizio fa parte del corso

Designing Forecasting Pipelines for Production

Visualizza il corso

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

performance_metrics = []

# Loop through models and calculate metrics
for model in ["LGBMRegressor", "XGBRegressor", "LinearRegression"]:
    performance_metrics.append({
        "model": model,
        "mape": ____(fc["y"], fc[model]),
        "rmse": ____(fc["y"], fc[____]),
        "coverage": ____(fc["y"], fc[f"{model}-lo-95"], fc[f"{model}-hi-95"])
    })

# Create DataFrame and sort by RMSE
fc_performance = pd.DataFrame(performance_metrics).sort_values("____")

print(fc_performance)
Modifica ed esegui il codice