Train a CNN model for text
Well done defining the TextClassificationCNN class. PyBooks now needs to train the model to optimize it for accurate sentiment analysis of book reviews.
The following packages have been imported for you:
torch, torch.nn as nn, torch.nn.functional as F, torch.optim as optim.
An instance of TextClassificationCNN() with arguments vocab_size and embed_dim has also been loaded and saved as model.
Questo esercizio fa parte del corso
Deep Learning for Text with PyTorch
Istruzioni dell'esercizio
- Define a loss function used for binary classification and save as
criterion. - Zero the gradients at the start of the training loop.
- Update the parameters at the end of the loop.
Esercizio pratico interattivo
Prova a risolvere questo esercizio completando il codice di esempio.
# Define the loss function
criterion = nn.____()
optimizer = optim.SGD(model.parameters(), lr=0.1)
for epoch in range(10):
for sentence, label in data:
# Clear the gradients
model.____()
sentence = torch.LongTensor([word_to_ix.get(w, 0) for w in sentence]).unsqueeze(0)
label = torch.LongTensor([int(label)])
outputs = model(sentence)
loss = criterion(outputs, label)
loss.backward()
# Update the parameters
____.____()
print('Training complete!')