IniziaInizia gratis

Anonymization of high-dimensional data

Preserving privacy becomes inefficient due to the curse of dimensionality. The curse of dimensionality refers to a set of problems that arise when working with high-dimensional data. As the number of features or dimensions grows, the amount of data we need to generalize accurately grows exponentially. This is especially the case with k-anonymity: the more columns, the more complex reaching a k-anonymous dataset can be.

How does PCA work concerning the anonymization of datasets and dataset releases?

Questo esercizio fa parte del corso

Data Privacy and Anonymization in Python

Visualizza il corso

Esercizio pratico interattivo

Passa dalla teoria alla pratica con uno dei nostri esercizi interattivi

Inizia esercizio