Analyzing missing and unique values
As a grocery inventory analyst, you need to assess data quality in your new inventory tracking system. Before analyzing stock levels and pricing, you need to check for missing data and verify product categorization. Load the inventory data, examine each column for completeness, and analyze category distributions. Some sample data is shown below.
| Product_Name | Category | Date_Received | Stock_Quantity | Unit_Price |
|---|---|---|---|---|
| Bell Pepper | Fruits & Vegetables | 3/1/24 | 46 | 4.6 |
| Vegetable Oil | Oils & Fats | 4/1/24 | 51 | 2 |
| Parmesan Cheese | Dairy | 4/1/24 | 38 | 12 |
tablesaw packages have been imported for you.
Questo esercizio fa parte del corso
Cleaning Data in Java
Istruzioni dell'esercizio
- Extract the column from
inventoryand count missing values in the column. - Count the
inventoryby unique categories.
Esercizio pratico interattivo
Prova a risolvere questo esercizio completando il codice di esempio.
public class GroceryDataQuality {
public static void main(String[] args) {
Table inventory = Table.read().csv("grocery_inventory.csv");
for (String colName : inventory.columnNames()) {
// Extract the column and count missing values in the column
int missing = inventory.____(colName).____();
System.out.println(colName + " missing values: " + missing);
}
// Count the inventory by unique categories
Table catCounts = ____.____("Category");
System.out.println("\nCategory distribution:");
System.out.println(catCounts);
}
}