Rasa NLU
In this exercise, you'll use Rasa NLU to create an interpreter, which parses incoming user messages and returns a set of entities. Your job is to train an interpreter using the MITIE entity recognition model in Rasa NLU.
Questo esercizio fa parte del corso
Building Chatbots in Python
Istruzioni dell'esercizio
- Create a dictionary called
argswith a single key"pipeline"with value"spacy_sklearn". - Create a
configby callingRasaNLUConfig()with the single argumentcmdline_argswith valueargs. - Create a
trainerby callingTrainer()using the configuration as the argument. - Create a
interpreterby callingtrainer.train()with thetraining_data.
Esercizio pratico interattivo
Prova a risolvere questo esercizio completando il codice di esempio.
# Import necessary modules
from rasa_nlu.converters import load_data
from rasa_nlu.config import RasaNLUConfig
from rasa_nlu.model import Trainer
# Create args dictionary
args = ____
# Create a configuration and trainer
config = ____
trainer = ____
# Load the training data
training_data = load_data("./training_data.json")
# Create an interpreter by training the model
interpreter = ____
# Test the interpreter
print(interpreter.parse("I'm looking for a Mexican restaurant in the North of town"))