CommencerCommencer gratuitement

Stripping outputs of thoughts

One of the main strengths of reasoning models is their thought process, captured in their thinking tokens. However, storing and processing all of these extra tokens can become problematic in multi-turn conversations in chatbot applications.

One approach is to strip model outputs of their "thoughts" (the thinking content), which you can do with regular expressions (RegEx). Have a try doing this on an example response stored in the response_content string.

Cet exercice fait partie du cours

Working with DeepSeek in Python

Afficher le cours

Instructions

  • Remove the thinking tokens and tags from the response_content string using the RegEx pattern provided.
  • Strip final_response of leading and trailing whitespace.

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

import re

# Remove the thinking tokens and tags
final_response = re.____(r'[\s\S]*?<\/think>\s*', ____, ____, re.DOTALL)

# Strip final_response of whitespace
print(final_response.____())
Modifier et exécuter le code