Completing the decoder transformer
Time to build the decoder transformer body! This will mean combining the InputEmbeddings, PositionalEncoding, and DecoderLayer classes you've created previously.
Cet exercice fait partie du cours
Transformer Models with PyTorch
Instructions
- Define a list of
num_layersdecoder layers using a list comprehension and theDecoderLayerclass. - Define a linear layer to project the hidden states into word likelihoods.
- Complete the forward pass through the layers defined in
__init__. - Instantiate a decoder transformer and apply it to
input_tokensandtgt_mask.
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
class TransformerDecoder(nn.Module):
def __init__(self, vocab_size, d_model, num_layers, num_heads, d_ff, dropout, max_seq_length):
super(TransformerDecoder, self).__init__()
self.embedding = InputEmbeddings(vocab_size, d_model)
self.positional_encoding = PositionalEncoding(d_model, max_seq_length)
# Define the list of decoder layers and linear layer
self.layers = nn.____([____(d_model, num_heads, d_ff, dropout) for _ in range(num_layers)])
# Define a linear layer to project hidden states to likelihoods
self.fc = ____
def forward(self, x, tgt_mask):
# Complete the forward pass
x = self.____(x)
x = self.____(x)
for layer in self.layers:
x = ____
x = self.____(x)
return F.log_softmax(x, dim=-1)
# Instantiate a decoder transformer and apply it to input_tokens and tgt_mask
transformer_decoder = ____(vocab_size, d_model, num_layers, num_heads, d_ff, dropout, max_seq_length)
output = ____
print(output)
print(output.shape)