CommencerCommencer gratuitement

Training with cross-validation

Time to train your model with the best parameters found: 0.001 for the learning rate, 50 epochs, a 128 batch_size and relu activations.

The create_model() function from the previous exercise is ready for you to use. X and y are loaded as features and labels.

Use the best values found for your model when creating your KerasClassifier object so that they are used when performing cross_validation.

End this chapter by training an awesome tuned model on the breast cancer dataset!

Cet exercice fait partie du cours

Introduction to Deep Learning with Keras

Afficher le cours

Instructions

  • Import KerasClassifier from tensorflow.keras scikit_learn wrappers.
  • Create a KerasClassifier object providing the best parameters found.
  • Pass your model, features and labels to cross_val_score to perform cross-validation with 3 folds.

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

# Import KerasClassifier from tensorflow.keras wrappers
from tensorflow.keras.wrappers.____ import ____

# Create a KerasClassifier
model = ____(build_fn = create_model(learning_rate = ____, activation = ____), epochs = ____, 
             batch_size = ____, verbose = 0)

# Calculate the accuracy score for each fold
kfolds = cross_val_score(____, ____, ____, cv = ____)

# Print the mean accuracy
print('The mean accuracy was:', kfolds.mean())

# Print the accuracy standard deviation
print('With a standard deviation of:', kfolds.std())
Modifier et exécuter le code