CommencerCommencer gratuitement

Visualize filtered graph using nxviz

Here, you'll visualize the filtered graph using a circos plot. The circos plot is a natural choice for this visualization, as you can use node grouping and coloring to visualize the partitions, while the circular layout preserves the aesthetics of the visualization.

Cet exercice fait partie du cours

Intermediate Network Analysis in Python

Afficher le cours

Instructions

  • Compute degree centrality scores of each node using the bipartite module degree centralities, but based on the degree centrality in the original graph.
    • Use the nx.bipartite.degree_centrality() function for this, with the arguments G and nodes=forum_nodes.
  • Create a new circos plot with nodes colored and grouped (parameters node_color_by and group_by) by their partition label ('bipartite'), and ordered (parameter sort_by) by their degree centrality ('dc') and display it.
    • To ensure that the nodes are visible when displayed, we have included the argument node_enc_kwargs={'radius': 10}.

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

# Import necessary modules
from nxviz import circos
import networkx as nx
import matplotlib.pyplot as plt

# Compute degree centrality scores of each node
dcs = ____(____, nodes=____)
for n, d in G_sub.nodes(data=True):
    G_sub.nodes[n]['dc'] = dcs[n]

# Create the circos plot: c
c = _____(___, _____, _____, _____, node_enc_kwargs={'radius': 5})

# Display the plot
plt.show() 
Modifier et exécuter le code