Performing data validation
Now that you've defined the schema, it's time to perform data validation. In this exercise, you'll create validation rules to ensure data quality and check for common issues like duplicates and null values.
The table_schema from the previous exercise is preloaded for you, along with the ts DataFrame and pointblank library.
Cet exercice fait partie du cours
Designing Forecasting Pipelines for Production
Instructions
- Define validation using the right method and passing the
tsDataFrame. - Set up validation rules with the
table_schemaand check for duplicates. - Print the validation report.
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
# Define the validation
validation = (pb.____(data=____,
tbl_name="US48 Data Validation",
label="Data Refresh",
thresholds=pb.Thresholds(warning=0.2, error=0, critical=0.1))
# Set up the validation rules
.col_schema_match(schema=____)
.col_vals_gt(columns="value", value=0)
.col_vals_in_set(columns="respondent", set = ["US48"])
.col_vals_in_set(columns="type", set = ["D"])
.col_vals_not_null(columns=["period", "value"])
.____()
.interrogate())
# Print the validation report
print(validation.____())