Defining the schema
Let's start by defining the expected schema for data validation. This is a critical step in ensuring data quality throughout the ETL pipeline.
You'll use the pointblank library to define the schema structure.
The dataset has already been loaded for you as ts.
Cet exercice fait partie du cours
Designing Forecasting Pipelines for Production
Instructions
- Start by importing
pointblank. - Define the schema using the right method.
- Set the
respondentcolumn toobjecttype andvaluecolumn tofloat64type.
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
# Import the required library
import ____ as ____
# Define the schema and set columns
table_schema = pb.____(
columns=[
("period", "datetime64[ns]"),
("respondent", "____"),
("respondent-name", "object"),
("type", "object"),
("type-name", "object"),
("value", "____"),
("value-units", "object")])
print(table_schema)