Fitting the model
Now that your model and parameters are ready, you'll initialize MLForecast and fit it to the time series data.
The model and params variables from the previous exercise are available, along with the ts DataFrame.
Cet exercice fait partie du cours
Designing Forecasting Pipelines for Production
Instructions
- Create an
MLForecastinstance namedmlf. - Set the
freq,lags, anddate_featuresarguments using the respective keys from theparamsdictionary. - Fit the model to the
tsDataFrame.
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
# Create an MLForecast instance
mlf = ____(
# Set the freq, lags, and date_features arguments
models=model,
freq=params["____"],
lags=params["____"],
date_features=params["____"]
)
# Fit mlf to the time series data
mlf.fit(____)