Defining the forecasting pipeline
Now you'll define the forecasting model and parameters for the MLForecast pipeline. This step prepares the model configuration that will be used for time series forecasting in the pipeline.
Cet exercice fait partie du cours
Designing Forecasting Pipelines for Production
Instructions
- Import
LGBMRegressorfromlightgbm. - Instantiate a
LGBMRegressormodel with100estimators and a learning rate of0.05. - Create a dictionary named
paramsthat includes the frequency ("h"), lags (1-24), and date features ("month","day","dayofweek","week", and"hour").
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
# Import LGBMRegressor from lightgbm
from ____ import ____
# Instantiate the model
model = ____(n_estimators=____, learning_rate=____)
# Set the model parameters
params = {
"freq": "____",
"lags": list(range(____, ____)),
"date_features": ["month", "day", "____", "____", "hour"]
}