Setting up the DAG
Orchestration tools such as Apache Airflow are essential for automating data and machine learning workflows.
In this exercise, you'll begin setting up a Directed Acyclic Graph (DAG) by importing the required classes and configuring default arguments that define how your pipeline will run.
Cet exercice fait partie du cours
Designing Forecasting Pipelines for Production
Instructions
- Import the
DAGandPythonOperatorclasses from Airflow. - Set the start date as 7th July, 2025.
- Set
email_on_failuretoFalse.
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
# Import required classes
from airflow import ____
from airflow.providers.standard.operators.python import ____
from datetime import datetime
default_args = {
'owner': 'airflow',
# Define the arguments
'depends_on_past': False,
'start_date': datetime(____),
'email_on_failure': ____}
print(f"DAG configured to start on {default_args['start_date']}")