CommencerCommencer gratuitement

Setting up the DAG

Orchestration tools such as Apache Airflow are essential for automating data and machine learning workflows.

In this exercise, you'll begin setting up a Directed Acyclic Graph (DAG) by importing the required classes and configuring default arguments that define how your pipeline will run.

Cet exercice fait partie du cours

Designing Forecasting Pipelines for Production

Afficher le cours

Instructions

  • Import the DAG and PythonOperator classes from Airflow.
  • Set the start date as 7th July, 2025.
  • Set email_on_failure to False.

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

# Import required classes
from airflow import ____
from airflow.providers.standard.operators.python import ____
from datetime import datetime

default_args = {
  'owner': 'airflow',
  # Define the arguments
  'depends_on_past': False,
  'start_date': datetime(____),
  'email_on_failure': ____}

print(f"DAG configured to start on {default_args['start_date']}")
Modifier et exécuter le code