CommencerCommencer gratuitement

Visualizing forecast results

After defining and training models using backtesting, it's time to visualize the results. Visualization is a quick and effective way to assess model performance across partitions.

The ts and bkt_df DataFrames from previous exercises, along with the Plotly library, have already been preloaded for you. Let's explore how well our models performed!

Cet exercice fait partie du cours

Designing Forecasting Pipelines for Production

Afficher le cours

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

partitions_labels = bkt_df["cutoff"].unique()
ts_sub = ts[ts["ds"] > ts["ds"].max() - datetime.timedelta(hours=24 * 7)]

# Create subplots with four rows (one for each partition)
fig = make_subplots(rows=4, cols=1, subplot_titles=["Partitions: " + str(i) for i in partitions_labels])

r = 1  

for i in partitions_labels:
    if r == 1:
        showlegend = True
    else:
        showlegend = False
    bkt_sub = bkt_df[bkt_df["cutoff"] == i]
    # Add actual values to the plot
    fig.append_trace(go.Scatter(x=ts_sub["ds"], y=ts_sub["y"], legendgroup="actual", showlegend=showlegend, 
                                mode='lines', name='Actual', line=dict(color='#023047', width=2)), row=r, col=1)
    # Add k-nearest neighbors predictions
    fig.append_trace(go.Scatter(x=bkt_sub["ds"], y=bkt_sub["knn"], mode='lines', name='k-nearest neighbors', 
                                legendgroup="knn", showlegend=showlegend, line=dict(color='#2a9d8f', width=1.5, dash="dash")), row=r, col=1)
    # Add Multi-layer Perceptron predictions
    fig.append_trace(go.Scatter(x=bkt_sub["ds"], y=bkt_sub["mlp"], mode='lines', name='Multi-layer Perceptron', 
                                legendgroup="mlp", showlegend=showlegend, line=dict(color='#0077b6', width=1.5, dash="dot")), row=r, col=1)
    # Add ElasticNet predictions
    fig.append_trace(go.Scatter(x=bkt_sub["ds"], y=bkt_sub["enet"], mode='lines', name='ElasticNet', 
                                legendgroup="enet", showlegend=showlegend, line=dict(color='#ffc8dd', width=1.5, dash="dot")), row=r, col=1)
    r = r + 1 

fig.update_layout(height=500)
fig.show()
Modifier et exécuter le code