CommencerCommencer gratuitement

Training models with backtesting

Building on the previous exercises, you'll now evaluate your models using backtesting. You'll define 4 partitions, each with a 12-hour shift and a 72-hour testing window, and execute the process with the cross_validation() method.

The ts DataFrame and initialized MLForecast object (mlf) are preloaded, so you can focus on setting up and running the backtesting. Let's get started!

Cet exercice fait partie du cours

Designing Forecasting Pipelines for Production

Afficher le cours

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

# Import a library for interval calibration
from mlforecast.utils import ____

# Set parameters
h = ____  
step_size = ____  
partitions = 4  
n_windows = 3  
method = "conformal_distribution"  
levels = [95] 

# Initialize PredictionIntervals
pi = ____(h=____, n_windows=____, method=____)
Modifier et exécuter le code