Logging tuned models
You have been experimenting with different model hyperparameters and need to log your latest round of experiment results to MLflow, let's do it!
Cet exercice fait partie du cours
Designing Forecasting Pipelines for Production
Instructions
- Set the experiment name as
"hyperparameter_tuning". - Loop over the index and rows of
df. - Start an MLflow run.
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
# Set the experiment name
experiment_name = "____"
experiment_id = mlflow.create_experiment(experiment_name)
# Loop through the DataFrame
for idx, row in df.____():
# Start a run
with mlflow.____(experiment_id=____):
model_params = ml_models[row["model_label"]].get_params()
model_params["model_name"] = row["model_name"]
model_params["model_label"] = row["model_label"]
model_params["partition"] = row["partition"]
model_params["lags"] = list(range(1, 24))
model_params["date_features"] = ["month", "day", "dayofweek", "week", "hour"]
mlflow.log_params(model_params)
mlflow.log_metric("mape", row["mape"])
mlflow.log_metric("rmse", row["rmse"])