CommencerCommencer gratuitement

Logging tuned models

You have been experimenting with different model hyperparameters and need to log your latest round of experiment results to MLflow, let's do it!

Cet exercice fait partie du cours

Designing Forecasting Pipelines for Production

Afficher le cours

Instructions

  • Set the experiment name as "hyperparameter_tuning".
  • Loop over the index and rows of df.
  • Start an MLflow run.

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

# Set the experiment name
experiment_name = "____"
experiment_id = mlflow.create_experiment(experiment_name)

# Loop through the DataFrame
for idx, row in df.____():
  # Start a run
  with mlflow.____(experiment_id=____):
    model_params = ml_models[row["model_label"]].get_params()
    model_params["model_name"] = row["model_name"]
    model_params["model_label"] = row["model_label"]
    model_params["partition"] = row["partition"]
    model_params["lags"] = list(range(1, 24))
    model_params["date_features"] = ["month", "day", "dayofweek", "week", "hour"]
    mlflow.log_params(model_params)
    mlflow.log_metric("mape", row["mape"])
    mlflow.log_metric("rmse", row["rmse"])
Modifier et exécuter le code