Rasa NLU
In this exercise, you'll use Rasa NLU to create an interpreter
, which parses incoming user messages and returns a set of entities. Your job is to train an interpreter
using the MITIE entity recognition model in Rasa NLU.
Cet exercice fait partie du cours
Building Chatbots in Python
Instructions
- Create a dictionary called
args
with a single key"pipeline"
with value"spacy_sklearn"
. - Create a
config
by callingRasaNLUConfig()
with the single argumentcmdline_args
with valueargs
. - Create a
trainer
by callingTrainer()
using the configuration as the argument. - Create a
interpreter
by callingtrainer.train()
with thetraining_data
.
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
# Import necessary modules
from rasa_nlu.converters import load_data
from rasa_nlu.config import RasaNLUConfig
from rasa_nlu.model import Trainer
# Create args dictionary
args = ____
# Create a configuration and trainer
config = ____
trainer = ____
# Load the training data
training_data = load_data("./training_data.json")
# Create an interpreter by training the model
interpreter = ____
# Test the interpreter
print(interpreter.parse("I'm looking for a Mexican restaurant in the North of town"))