ComenzarEmpieza gratis

Computing the MSE & RMSE of a model

Just as you did earlier with \(R^2\), which is a measure of model fit, let's now compute the root mean square error (RMSE) of our models, which is a commonly used measure of preditive error. Let's use the model of price as a function of size and number of bedrooms.

The model is available in your workspace as model_price_2.

Este ejercicio forma parte del curso

Modeling with Data in the Tidyverse

Ver curso

Ejercicio interactivo práctico

Prueba este ejercicio y completa el código de muestra.

# Get all residuals, square them, and take mean                    
get_regression_points(model_price_2) %>%
  mutate(sq_residuals = ___) %>%
  summarize(mse = ___(sq_residuals))
Editar y ejecutar código