Analyzing the best results
At the end of the day, we primarily care about the best performing 'square' in a grid search. Luckily Scikit Learn's gridSearchCv
objects have a number of parameters that provide key information on just the best square (or row in cv_results_
).
Three properties you will explore are:
best_score_
– The score (here ROC_AUC) from the best-performing square.best_index_
– The index of the row incv_results_
containing information on the best-performing square.best_params_
– A dictionary of the parameters that gave the best score, for example'max_depth': 10
The grid search object grid_rf_class
is available.
A dataframe (cv_results_df
) has been created from the cv_results_
for you on line 6. This will help you index into the results.
Este ejercicio forma parte del curso
Hyperparameter Tuning in Python
Instrucciones del ejercicio
- Extract and print out the ROC_AUC score from the best performing square in
grid_rf_class
. - Create a variable from the best-performing row by indexing into
cv_results_df
. - Create a variable,
best_n_estimators
by extracting then_estimators
parameter from the best-performing square ingrid_rf_class
and print it out.
Ejercicio interactivo práctico
Prueba este ejercicio y completa el código de muestra.
# Print out the ROC_AUC score from the best-performing square
best_score = grid_rf_class._____
print(best_score)
# Create a variable from the row related to the best-performing square
cv_results_df = pd.DataFrame(grid_rf_class.cv_results_)
best_row = cv_results_df.loc[[grid_rf_class.____]]
print(best_row)
# Get the n_estimators parameter from the best-performing square and print
best_n_estimators = grid_rf_class.____["_____"]
print(best_n_estimators)