ComenzarEmpieza gratis

Saving conversation memory in the graph

The simplest chat message history strategy is save all of the messages in the database, exactly as they are. This implementation is simple to code, but the information can be difficult to extract reliably from longer conversations. For longer conversations, you'll also potentially have cost and latency issues due to the number of tokens being sent with each input.

Este ejercicio forma parte del curso

Graph RAG with LangChain and Neo4j

Ver curso

Instrucciones del ejercicio

  • Instantiate a class for storing chat messages in a Neo4j database using the credentials and SESSION_ID variable provided.
  • Start the conversation with a message from the user.
  • Add an AI generated response to the conversation.

Ejercicio interactivo práctico

Prueba este ejercicio y completa el código de muestra.

from langchain_neo4j import Neo4jChatMessageHistory

# Store chat history in Neo4j
history = ____(
    url=NEO4J_URL,
    username=NEO4J_USERNAME,
    password=NEO4J_PASSWORD,
    ____=SESSION_ID,
)

# Add a user message
history.____("My favourite character is Juliet.")

# Add an AI message
history.____("Great choice! Juliet is a multi-faceted and complex character.")
Editar y ejecutar código