Saving custom recipes
The customer has now asked you for a modification in the requirements. This time, they'd like to increase the number of parameters and use the Llama 3.2 model with 3B parameters. You make this modification to your dictionary, and then save it as a YAML file.
The yaml
library has been pre-imported.
Este ejercicio forma parte del curso
Fine-Tuning with Llama 3
Instrucciones del ejercicio
- Specify the new model requirement, the
torchtune.models.llama3_2.llama3_2_3b
model, in your dictionary. - Save the requirements as a YAML file named
custom_recipe.yaml
.
Ejercicio interactivo práctico
Prueba este ejercicio y completa el código de muestra.
config_dict = {
# Update the model
____,
"batch_size": 8,
"device": "cuda",
"optimizer": {"_component_": "bitsandbytes.optim.PagedAdamW8bit", "lr": 3e-05},
"dataset": {"_component_": "custom_dataset"},
"output_dir": "/tmp/finetune_results"
}
# Save the updated configuration to a new YAML file
with open("custom_recipe.yaml", "w") as yaml_file:
____