ComenzarEmpieza gratis

Saving custom recipes

The customer has now asked you for a modification in the requirements. This time, they'd like to increase the number of parameters and use the Llama 3.2 model with 3B parameters. You make this modification to your dictionary, and then save it as a YAML file.

The yaml library has been pre-imported.

Este ejercicio forma parte del curso

Fine-Tuning with Llama 3

Ver curso

Instrucciones del ejercicio

  • Specify the new model requirement, the torchtune.models.llama3_2.llama3_2_3b model, in your dictionary.
  • Save the requirements as a YAML file named custom_recipe.yaml.

Ejercicio interactivo práctico

Prueba este ejercicio y completa el código de muestra.

config_dict = {
    # Update the model
    ____,
    "batch_size": 8,
    "device": "cuda",
    "optimizer": {"_component_": "bitsandbytes.optim.PagedAdamW8bit", "lr": 3e-05},
    "dataset": {"_component_": "custom_dataset"},
    "output_dir": "/tmp/finetune_results"
}

# Save the updated configuration to a new YAML file
with open("custom_recipe.yaml", "w") as yaml_file:
    ____
Editar y ejecutar código