Calculate the number of function calls
Let's consider a classic example of recursion – the Fibonacci sequence, represented by non-negative integers starting from 0 with each element \(F(n)\) equals the sum of the preceding two: 0, 1, 1, 2, 3, 5, 8, 13, 21, .... You are given a function that returns a tuple with the \(n\)-th element of the sequence and the amount of calls to fib() used:
def fib(n):
if n < 2:
return (n, 1)
fib1 = fib(n-1)
fib2 = fib(n-2)
return (fib1[0] + fib2[0], fib1[1] + fib2[1] + 1)
How many calls to fib() are needed to calculate the \(15^{th}\) and \(20^{th}\) elements of the sequence?
Diese Übung ist Teil des Kurses
Practicing Coding Interview Questions in Python
Interaktive Übung
In dieser interaktiven Übung kannst du die Theorie in die Praxis umsetzen.
Übung starten