LoslegenKostenlos loslegen

Computing the MSE & RMSE of a model

Just as you did earlier with \(R^2\), which is a measure of model fit, let's now compute the root mean square error (RMSE) of our models, which is a commonly used measure of preditive error. Let's use the model of price as a function of size and number of bedrooms.

The model is available in your workspace as model_price_2.

Diese Übung ist Teil des Kurses

Modeling with Data in the Tidyverse

Kurs anzeigen

Interaktive Übung

Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.

# Get all residuals, square them, and take mean                    
get_regression_points(model_price_2) %>%
  mutate(sq_residuals = ___) %>%
  summarize(mse = ___(sq_residuals))
Code bearbeiten und ausführen