LoslegenKostenlos loslegen

Reusing model parameters

Replicating model performance is vital in model validation. Replication is also important when sharing models with co-workers, reusing models on new data or asking questions on a website such as Stack Overflow. You might use such a site to ask other coders about model errors, output, or performance. The best way to do this is to replicate your work by reusing model parameters.

In this exercise, you use various methods to recall which parameters were used in a model.

Diese Übung ist Teil des Kurses

Model Validation in Python

Kurs anzeigen

Anleitung zur Übung

  • Print out the characteristics of the model rfc by simply printing the model.
  • Print just the random state of the model.
  • Print the dictionary of model parameters.

Interaktive Übung

Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.

rfc = RandomForestClassifier(n_estimators=50, max_depth=6, random_state=1111)

# Print the classification model
____(____)

# Print the classification model's random state parameter
print('The random state is: {}'.format(rfc.____))

# Print all parameters
print('Printing the parameters dictionary: {}'.format(rfc.____()))
Code bearbeiten und ausführen