Saving custom recipes
The customer has now asked you for a modification in the requirements. This time, they'd like to increase the number of parameters and use the Llama 3.2 model with 3B parameters. You make this modification to your dictionary, and then save it as a YAML file.
The yaml
library has been pre-imported.
Diese Übung ist Teil des Kurses
Fine-Tuning with Llama 3
Anleitung zur Übung
- Specify the new model requirement, the
torchtune.models.llama3_2.llama3_2_3b
model, in your dictionary. - Save the requirements as a YAML file named
custom_recipe.yaml
.
Interaktive Übung
Versuche dich an dieser Übung, indem du diesen Beispielcode vervollständigst.
config_dict = {
# Update the model
____,
"batch_size": 8,
"device": "cuda",
"optimizer": {"_component_": "bitsandbytes.optim.PagedAdamW8bit", "lr": 3e-05},
"dataset": {"_component_": "custom_dataset"},
"output_dir": "/tmp/finetune_results"
}
# Save the updated configuration to a new YAML file
with open("custom_recipe.yaml", "w") as yaml_file:
____