Registering the model
The final step is to register and log the fitted model using MLflow. This allows you to track and version your models for production deployment.
The datetime, mlflow, mlforecast.flavor packages, and the fitted mlf model are preloaded for you.
Diese Übung ist Teil des Kurses
Designing Forecasting Pipelines for Production
Anleitung zur Übung
- Set the
run_nameusing the current timestamp created for you in therun_timevariable. - Use
mlflow.start_run()to start a run with the specified experiment ID. - Log the model using the right method.
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
experiment_name = "ml_forecast"
try:
mlflow.create_experiment(name=experiment_name)
meta = mlflow.get_experiment_by_name(experiment_name)
print(f"Setting a new experiment {experiment_name}")
except:
print(f"Experiment {experiment_name} exists, pulling the metadata")
meta = mlflow.get_experiment_by_name(experiment_name)
# Setup the run name and time
run_time = datetime.datetime.now().strftime("%Y-%m-%d %H-%M-%S")
run_name = f"lightGBM6_{____}"
# Start the run
with mlflow.____(experiment_id=meta.experiment_id, run_name=run_name) as run:
# Log the model
mlforecast.flavor.____(model=mlf, artifact_path="prod_model")
print(f"MLflow Run created - Name: {run_name}, ID: {run.info.run_id}")