LoslegenKostenlos loslegen

Registering the model

The final step is to register and log the fitted model using MLflow. This allows you to track and version your models for production deployment.

The datetime, mlflow, mlforecast.flavor packages, and the fitted mlf model are preloaded for you.

Diese Übung ist Teil des Kurses

Designing Forecasting Pipelines for Production

Kurs anzeigen

Anleitung zur Übung

  • Set the run_name using the current timestamp created for you in the run_time variable.
  • Use mlflow.start_run() to start a run with the specified experiment ID.
  • Log the model using the right method.

Interaktive Übung

Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.

experiment_name = "ml_forecast"
try:
    mlflow.create_experiment(name=experiment_name)
    meta = mlflow.get_experiment_by_name(experiment_name)
    print(f"Setting a new experiment {experiment_name}")
except:
    print(f"Experiment {experiment_name} exists, pulling the metadata")
    meta = mlflow.get_experiment_by_name(experiment_name)

# Setup the run name and time
run_time = datetime.datetime.now().strftime("%Y-%m-%d %H-%M-%S")
run_name = f"lightGBM6_{____}"

# Start the run
with mlflow.____(experiment_id=meta.experiment_id, run_name=run_name) as run:
    # Log the model
    mlforecast.flavor.____(model=mlf, artifact_path="prod_model")
    print(f"MLflow Run created - Name: {run_name}, ID: {run.info.run_id}")
Code bearbeiten und ausführen