LoslegenKostenlos loslegen

Fitting the model

Now that your model and parameters are ready, you'll initialize MLForecast and fit it to the time series data.

The model and params variables from the previous exercise are available, along with the ts DataFrame.

Diese Übung ist Teil des Kurses

Designing Forecasting Pipelines for Production

Kurs anzeigen

Anleitung zur Übung

  • Create an MLForecast instance named mlf.
  • Set the freq, lags, and date_features arguments using the respective keys from the params dictionary.
  • Fit the model to the ts DataFrame.

Interaktive Übung

Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.

# Create an MLForecast instance
mlf = ____(
    # Set the freq, lags, and date_features arguments
  	models=model,
    freq=params["____"],
    lags=params["____"],
    date_features=params["____"]
)

# Fit mlf to the time series data
mlf.fit(____)
Code bearbeiten und ausführen