Defining the forecasting pipeline
Now you'll define the forecasting model and parameters for the MLForecast pipeline. This step prepares the model configuration that will be used for time series forecasting in the pipeline.
Diese Übung ist Teil des Kurses
Designing Forecasting Pipelines for Production
Anleitung zur Übung
- Import
LGBMRegressorfromlightgbm. - Instantiate a
LGBMRegressormodel with100estimators and a learning rate of0.05. - Create a dictionary named
paramsthat includes the frequency ("h"), lags (1-24), and date features ("month","day","dayofweek","week", and"hour").
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
# Import LGBMRegressor from lightgbm
from ____ import ____
# Instantiate the model
model = ____(n_estimators=____, learning_rate=____)
# Set the model parameters
params = {
"freq": "____",
"lags": list(range(____, ____)),
"date_features": ["month", "day", "____", "____", "hour"]
}