LoslegenKostenlos loslegen

Defining the forecasting pipeline

Now you'll define the forecasting model and parameters for the MLForecast pipeline. This step prepares the model configuration that will be used for time series forecasting in the pipeline.

Diese Übung ist Teil des Kurses

Designing Forecasting Pipelines for Production

Kurs anzeigen

Anleitung zur Übung

  • Import LGBMRegressor from lightgbm.
  • Instantiate a LGBMRegressor model with 100 estimators and a learning rate of 0.05.
  • Create a dictionary named params that includes the frequency ("h"), lags (1-24), and date features ("month", "day", "dayofweek", "week", and "hour").

Interaktive Übung

Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.

# Import LGBMRegressor from lightgbm
from ____ import ____

# Instantiate the model
model = ____(n_estimators=____, learning_rate=____)

# Set the model parameters
params = {
  "freq": "____",
  "lags": list(range(____, ____)),
  "date_features": ["month", "day", "____", "____", "hour"]
}
Code bearbeiten und ausführen