Prognoseergebnisse visualisieren
Nachdem du Modelle per Backtesting definiert und trainiert hast, ist es Zeit, die Ergebnisse zu visualisieren. Visualisierung ist eine schnelle und effektive Möglichkeit, die Modellleistung über die Partitionen hinweg zu beurteilen.
Die DataFrames ts und bkt_df aus den vorherigen Übungen sowie die Bibliothek Plotly wurden bereits für dich geladen. Schauen wir uns an, wie gut unsere Modelle abgeschnitten haben!
Diese Übung ist Teil des Kurses
Forecasting-Pipelines für die Produktion entwerfen
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
partitions_labels = bkt_df["cutoff"].unique()
ts_sub = ts[ts["ds"] > ts["ds"].max() - datetime.timedelta(hours=24 * 7)]
# Create subplots with four rows (one for each partition)
fig = make_subplots(rows=4, cols=1, subplot_titles=["Partitions: " + str(i) for i in partitions_labels])
r = 1
for i in partitions_labels:
if r == 1:
showlegend = True
else:
showlegend = False
bkt_sub = bkt_df[bkt_df["cutoff"] == i]
# Add actual values to the plot
fig.append_trace(go.Scatter(x=ts_sub["ds"], y=ts_sub["y"], legendgroup="actual", showlegend=showlegend,
mode='lines', name='Actual', line=dict(color='#023047', width=2)), row=r, col=1)
# Add k-nearest neighbors predictions
fig.append_trace(go.Scatter(x=bkt_sub["ds"], y=bkt_sub["knn"], mode='lines', name='k-nearest neighbors',
legendgroup="knn", showlegend=showlegend, line=dict(color='#2a9d8f', width=1.5, dash="dash")), row=r, col=1)
# Add Multi-layer Perceptron predictions
fig.append_trace(go.Scatter(x=bkt_sub["ds"], y=bkt_sub["mlp"], mode='lines', name='Multi-layer Perceptron',
legendgroup="mlp", showlegend=showlegend, line=dict(color='#0077b6', width=1.5, dash="dot")), row=r, col=1)
# Add ElasticNet predictions
fig.append_trace(go.Scatter(x=bkt_sub["ds"], y=bkt_sub["enet"], mode='lines', name='ElasticNet',
legendgroup="enet", showlegend=showlegend, line=dict(color='#ffc8dd', width=1.5, dash="dot")), row=r, col=1)
r = r + 1
fig.update_layout(height=500)
fig.show()