LoslegenKostenlos loslegen

Searching experiment results

MLflow makes it easy to query the results of your experiments, helping you track model performance and hyperparameters.

Let's examine your most recent experiment, finding the model with the lowest Mean Absolute Percentage Error (MAPE).

Diese Übung ist Teil des Kurses

Designing Forecasting Pipelines for Production

Kurs anzeigen

Anleitung zur Übung

  • Search MLflow runs by the experiment_name.
  • Get the single best-performing model from all_results based on metrics.mape.
  • Print the subset of best_mape_model.

Interaktive Übung

Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.

experiment_name = "hyperparameter_tuning"

# Search MLflow runs
all_results = mlflow.____(experiment_names=[____])

# Filter for the model with the best MAPE score
best_mape_model = all_results.____("metrics.mape").head(____)

# Print the model
print(____[["params.model_name", "metrics.mape"]])
Code bearbeiten und ausführen