LoslegenKostenlos loslegen

Logging tuned models

You have been experimenting with different model hyperparameters and need to log your latest round of experiment results to MLflow, let's do it!

Diese Übung ist Teil des Kurses

Designing Forecasting Pipelines for Production

Kurs anzeigen

Anleitung zur Übung

  • Set the experiment name as "hyperparameter_tuning".
  • Loop over the index and rows of df.
  • Start an MLflow run.

Interaktive Übung

Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.

# Set the experiment name
experiment_name = "____"
experiment_id = mlflow.create_experiment(experiment_name)

# Loop through the DataFrame
for idx, row in df.____():
  # Start a run
  with mlflow.____(experiment_id=____):
    model_params = ml_models[row["model_label"]].get_params()
    model_params["model_name"] = row["model_name"]
    model_params["model_label"] = row["model_label"]
    model_params["partition"] = row["partition"]
    model_params["lags"] = list(range(1, 24))
    model_params["date_features"] = ["month", "day", "dayofweek", "week", "hour"]
    mlflow.log_params(model_params)
    mlflow.log_metric("mape", row["mape"])
    mlflow.log_metric("rmse", row["rmse"])
Code bearbeiten und ausführen