LoslegenKostenlos loslegen

Web-friendly table

Now let's make the table in the last example more web-friendly.

Diese Übung ist Teil des Kurses

Building Dashboards with flexdashboard

Kurs anzeigen

Anleitung zur Übung

  • Add a table in the Station Usage chart that contains the data in station_trips_df, using the datatable() function.
  • Knit and expand the HTML viewer to explore the resulting table. Try sorting on the Gap column, searching for all the Caltrain stations, and going from page to page.

Interaktive Übung

Versuche dich an dieser Übung, indem du diesen Beispielcode vervollständigst.

{"my_document.Rmd":"---\ntitle: \"Bike Shares Daily\"\noutput: \n  flexdashboard::flex_dashboard:\n    orientation: columns\n    vertical_layout: fill\n---\n\n```{r setup, include=FALSE}\nlibrary(flexdashboard)\nlibrary(readr)\nlibrary(tidyverse)\nlibrary(lubridate)\nlibrary(plotly)\nlibrary(knitr)\nlibrary(DT)\n\ntrips_df <- read_csv('https://assets.datacamp.com/production/course_6355/datasets/sanfran_bikeshare_joined_oneday.csv')\n```\n\nColumn {data-width=650}\n-----------------------------------------------------------------------\n\n### Station Usage\n\n```{r}\n\nstation_trips_df <- trips_df %>%\n  select(start_station_name, end_station_name) %>%\n  pivot_longer(cols = start_station_name:end_station_name, names_to = 'Type', values_to = 'Station') %>%\n  group_by(Station, Type) %>%\n  summarize(n_trips = n()) %>% \n  mutate(Type = ifelse(Type == 'start_station_name', 'Trip Starts', 'Trip Ends')) %>%\n  pivot_wider(names_from = 'Type', values_from = 'n_trips') %>%\n  replace_na(list(`Trip Starts` = 0, `Trip Ends` = 0)) %>%\n  mutate(Gap = `Trip Ends` - `Trip Starts`)\n\n```\n\n\nColumn {data-width=350}\n-----------------------------------------------------------------------\n\n### Median Trip Length\n\n\n### % Short Trips\n\n\n### Trips by Start Time\n\n\n"}
Code bearbeiten und ausführen