Add summary statistics to your time series plot
It is possible to visualize time series plots and numerical summaries on one single graph by using the pandas API to matplotlib along with the table method:
# Plot the time series data in the DataFrame
ax = df.plot()
# Compute summary statistics of the df DataFrame
df_summary = df.describe()
# Add summary table information to the plot
ax.table(cellText=df_summary.values,
colWidths=[0.3]*len(df.columns),
rowLabels=df_summary.index,
colLabels=df_summary.columns,
loc='top')
This exercise is part of the course
Visualizing Time Series Data in Python
Exercise instructions
Review meat_mean in the shell -- a DataFrame that contains the mean of all the time series in meat.
- Assign all the values in
meat_meanto thecellTextargument. - Assign all the values in index of
meat_meanto therowLabelsargument. - Assign the column names of
meat_meanto thecolLabelsargument.
Hands-on interactive exercise
Have a go at this exercise by completing this sample code.
# Plot the meat data
ax = meat.plot(fontsize=6, linewidth=1)
# Add x-axis labels
ax.set_xlabel('Date', fontsize=6)
# Add summary table information to the plot
ax.table(cellText=meat_mean.____,
colWidths = [0.15]*len(meat_mean.columns),
rowLabels=meat_mean.____,
colLabels=meat_mean.____,
loc='top')
# Specify the fontsize and location of your legend
ax.legend(loc='upper center', bbox_to_anchor=(0.5, 0.95), ncol=3, fontsize=6)
# Show plot
plt.show()