Get startedGet started for free

Implement cross_val_score()

Your company has created several new candies to sell, but they are not sure if they should release all five of them. To predict the popularity of these new candies, you have been asked to build a regression model using the candy dataset. Remember that the response value is a head-to-head win-percentage against other candies.

Before you begin trying different regression models, you have decided to run cross-validation on a simple random forest model to get a baseline error to compare with any future results.

This exercise is part of the course

Model Validation in Python

View Course

Exercise instructions

  • Fill in cross_val_score().
    • Use X_train for the training data, and y_train for the response.
    • Use rfc as the model, 10-fold cross-validation, and mse for the scoring function.
  • Print the mean of the cv results.

Hands-on interactive exercise

Have a go at this exercise by completing this sample code.

rfc = RandomForestRegressor(n_estimators=25, random_state=1111)
mse = make_scorer(mean_squared_error)

# Set up cross_val_score
cv = cross_val_score(estimator=____,
                     X=____,
                     y=____,
                     cv=____,
                     scoring=____)

# Print the mean error
print(cv.____())
Edit and Run Code