1. Learn
  2. /
  3. Courses
  4. /
  5. Machine Learning for Time Series Data in Python

Exercise

Predicting using a regression model

Now that you've fit a model with the California housing data, lets see what predictions it generates on some new data. You can investigate the underlying relationship that the model has found between inputs and outputs by feeding in a range of numbers as inputs and seeing what the model predicts for each input.

A 1-D array new_inputs consisting of 100 "new" values for "MedHouseVal" (median house value) is available in your workspace along with the model you fit in the previous exercise.

Instructions

100 XP
  • Review new_inputs in the shell.
  • Reshape new_inputs appropriately to generate predictions.
  • Run the given code to visualize the predictions.