Building an ETL Pipeline
Ready to ratchet up the fun? In this exercise, you'll be responsible for building the rest of the load()
function before running each step in the ETL process. The extract()
and transform()
functions have been defined for you. Good luck!
This exercise is part of the course
ETL and ELT in Python
Exercise instructions
- Complete the
load()
function by writing thetransformed_data
DataFrame to a.csv
file, usingfile_name
. - Use the
transform()
function to clean theextracted_data
DataFrame. - Load
transformed_data
to thetransformed_data.csv
file using theload()
function.
Hands-on interactive exercise
Have a go at this exercise by completing this sample code.
def load(data_frame, file_name):
# Write cleaned_data to a CSV using file_name
data_frame.____(____)
print(f"Successfully loaded data to {file_name}")
extracted_data = extract(file_name="raw_data.csv")
# Transform extracted_data using transform() function
transformed_data = ____(data_frame=____)
# Load transformed_data to the file transformed_data.csv
____(data_frame=____, file_name="transformed_data.csv")