Get startedGet started for free

Forecasting with ML Models

As a data science consultant, your task is to predict US hourly electricity demand. In the previous task, you cleaned and prepared the data. Now, it's time to use machine learning models to build your forecast.

We previously covered the statsforecast workflow, and now you'll apply the same principles using mlforecast.

The train and test datasets, as well as models (LGBMRegressor(), XGBRegressor(), LinearRegression()), are preloaded.

The MLForecast class has been imported from the mlforecast package, ready to use. Let's build your forecast!

This exercise is part of the course

Designing Forecasting Pipelines for Production

View Course

Hands-on interactive exercise

Have a go at this exercise by completing this sample code.

# Define the ML models
ml_models = [____(),  XGBRegressor(), LinearRegression()]

# Set up the MLForecast object with models and frequency
mlf = ____(
    models= ____,  
    freq='____', 
    lags=list(range(1, 24)), 
    date_features=['year', 'month', 'day', 'dayofweek', 'quarter', 'week', 'hour'])
Edit and Run Code