Get startedGet started for free

Visualizing forecast results

After defining and training models using backtesting, it's time to visualize the results. Visualization is a quick and effective way to assess model performance across partitions.

The ts and bkt_df DataFrames from previous exercises, along with the Plotly library, have already been preloaded for you. Let's explore how well our models performed!

This exercise is part of the course

Designing Forecasting Pipelines for Production

View Course

Hands-on interactive exercise

Have a go at this exercise by completing this sample code.

partitions_labels = bkt_df["cutoff"].unique()
ts_sub = ts[ts["ds"] > ts["ds"].max() - datetime.timedelta(hours=24 * 7)]

# Create subplots with four rows (one for each partition)
fig = make_subplots(rows=4, cols=1, subplot_titles=["Partitions: " + str(i) for i in partitions_labels])

r = 1  

for i in partitions_labels:
    if r == 1:
        showlegend = True
    else:
        showlegend = False
    bkt_sub = bkt_df[bkt_df["cutoff"] == i]
    # Add actual values to the plot
    fig.append_trace(go.Scatter(x=ts_sub["ds"], y=ts_sub["y"], legendgroup="actual", showlegend=showlegend, 
                                mode='lines', name='Actual', line=dict(color='#023047', width=2)), row=r, col=1)
    # Add k-nearest neighbors predictions
    fig.append_trace(go.Scatter(x=bkt_sub["ds"], y=bkt_sub["knn"], mode='lines', name='k-nearest neighbors', 
                                legendgroup="knn", showlegend=showlegend, line=dict(color='#2a9d8f', width=1.5, dash="dash")), row=r, col=1)
    # Add Multi-layer Perceptron predictions
    fig.append_trace(go.Scatter(x=bkt_sub["ds"], y=bkt_sub["mlp"], mode='lines', name='Multi-layer Perceptron', 
                                legendgroup="mlp", showlegend=showlegend, line=dict(color='#0077b6', width=1.5, dash="dot")), row=r, col=1)
    # Add ElasticNet predictions
    fig.append_trace(go.Scatter(x=bkt_sub["ds"], y=bkt_sub["enet"], mode='lines', name='ElasticNet', 
                                legendgroup="enet", showlegend=showlegend, line=dict(color='#ffc8dd', width=1.5, dash="dot")), row=r, col=1)
    r = r + 1 

fig.update_layout(height=500)
fig.show()
Edit and Run Code