Query bakery sales data using SQL agent
The "bakehouse" schema in the samples catalog in Databricks contains fabricated data about bakery sales. We can create a LangChain Databricks SQL agent to connect to this dataset and then ask the agent queries about the data. The agent can use SQL to get the answers and can show it's work, describing the SQL queries and logic used to get to the solution.
This exercise is part of the course
Databricks with the Python SDK
Exercise instructions
- Create a LangChain SQL database from the
bakehousedataset in thesamplescatalog. - Create a
SQLDatabaseToolkitobject that connects to the LangChain SQL database andllm. - Create a LangChain SQL Agent that connects to the
llmandtoolkit. - Ask the Databricks SQL agent which product generates the most revenue.
Hands-on interactive exercise
Have a go at this exercise by completing this sample code.
# Create a LangChain SQL database from the `bakehouse` dataset in the `samples` catalog
bakehouse_db = SQLDatabase.from_databricks(
____="samples",
schema="bakehouse",
warehouse_id=warehouse_id)
# Create a SQLDatabaseToolkit object that connects to the LangChain SQL database and llm
toolkit = SQLDatabaseToolkit(____=bakehouse_db, llm=llm)
# Create a LangChain SQL Agent that connects to the llm and toolkit
agent = ____(llm=llm, toolkit=toolkit, verbose=True, handle_parsing_errors=True)
# Ask the Databricks SQL agent which product generates the most revenue
prompt = "Which product generates the most revenue?"
result = agent.run(____)
print(result)