RJAGS simulation for multivariate regression
Consider the following Bayesian model of volume \(Y\)i by weekday status \(X\)i and temperature \(Z\)i:
- likelihood: \(Y\)i \(\sim N(m\)i, \(s^2)\) where \(m\)i \(= a + b X\)i \(+ c Z\)i .
- priors: \(a \sim N(0, 200^2)\), \(b \sim N(0, 200^2)\), \(c \sim N(0, 20^2)\), \(s \sim Unif(0, 200)\)
Your previous exploration of the relationship between volume, weekday, and hightemp in the RailTrail data provided some insight into this relationship. You will combine this with insight from the priors to develop a posterior model of this relationship using RJAGS. The RailTrail data are in your work space.
This exercise is part of the course
Bayesian Modeling with RJAGS
Hands-on interactive exercise
Have a go at this exercise by completing this sample code.
# DEFINE the model
rail_model_2 <-