Get startedGet started for free

RJAGS simulation for multivariate regression

Consider the following Bayesian model of volume \(Y\)i by weekday status \(X\)i and temperature \(Z\)i:

  • likelihood: \(Y\)i \(\sim N(m\)i, \(s^2)\) where \(m\)i \(= a + b X\)i \(+ c Z\)i .
  • priors: \(a \sim N(0, 200^2)\), \(b \sim N(0, 200^2)\), \(c \sim N(0, 20^2)\), \(s \sim Unif(0, 200)\)

Your previous exploration of the relationship between volume, weekday, and hightemp in the RailTrail data provided some insight into this relationship. You will combine this with insight from the priors to develop a posterior model of this relationship using RJAGS. The RailTrail data are in your work space.

This exercise is part of the course

Bayesian Modeling with RJAGS

View Course

Hands-on interactive exercise

Have a go at this exercise by completing this sample code.

# DEFINE the model    
rail_model_2 <- 
Edit and Run Code