Este exercício faz parte do curso
Neste capítulo, você será apresentado ao fluxo MLe como ele visa a ajudar em algumas dificuldades do ciclo de vida do machine learning. Você será apresentado aos quatro principais conceitos que compõem o fluxo MLcom foco principal no programa ML. Você aprenderá a criar experimentos e execuções, bem como a rastrear métricas, parâmetros e artefatos. Por fim, você pesquisará o fluxo MLprogramaticamente para encontrar execuções de experimentos que atendam a determinados critérios.
Neste capítulo, você conhecerá os modelos de fluxo do ML. O componente MLflow Models do MLflow desempenha uma função essencial nas etapas de avaliação de modelos e engenharia de modelos do ciclo de vida do machine learning. Você aprenderá como o MLflow Models padroniza o empacotamento dos modelos do ML e também como salvá-los, registrá-los e carregá-los. Você aprenderá a criar modelos de fluxo MLpersonalizados para oferecer mais flexibilidade aos seus casos de uso e a avaliar o desempenho do modelo. Você utilizará o avançado conceito de "Flavors" e, por fim, usará a ferramenta de linha de comando MLflow para a implantação de modelos.
Este capítulo apresenta o conceito do fluxo MLchamado Registro de Modelos. Você será apresentado a como o Model Registry é usado para gerenciar o ciclo de vida dos modelos do ML. Você aprenderá a criar e pesquisar modelos no Model Registry. Em seguida, você aprenderá a registrar modelos no Model Registry e a fazer a transição de modelos entre estágios predefinidos. Por fim, você também aprenderá a implantar modelos a partir do Model Registry.
Neste capítulo, você obterá conhecimentos valiosos sobre como otimizar seu código de ciência de dados para reutilização e reprodutibilidade usando o MLflow Projects. O capítulo começa introduzindo o conceito de projetos de fluxo MLe orientando você na criação de um arquivo de projeto ML. A partir daí, você aprenderá a executar o MLflow Projects por meio da linha de comando e do módulo MLflow Projects e, ao mesmo tempo, descobrirá o poder do uso de parâmetros para aumentar a flexibilidade do seu código. Por fim, você aprenderá a gerenciar as etapas do ciclo de vida do machine learning criando um fluxo de trabalho de várias etapas usando o MLflow Projects.
Exercício atual