ComeçarComece gratuitamente

Evaluating perplexity

Try your had at generating text and evaluating the perplexity score.

You've been provided some input_text that is the start of a sentence: "Current trends show that by 2030 ".

Use an LLM to generate the rest of the sentence.

An AutoModelForCausalLM model and its tokenizer have been loaded for you as model and tokenizer variables.

Este exercício faz parte do curso

Introduction to LLMs in Python

Ver Curso

Instruções de exercício

  • Encode the input_text and pass it to the provided text generation model.
  • Load and compute the mean_perplexity score on the generated text.

Exercício interativo prático

Experimente este exercício preenchendo este código de exemplo.

# Encode the input text, generate and decode it
input_text_ids = ____(input_text, return_tensors="pt")
output = ____(input_text_ids, max_length=20)
generated_text = ____(output[0], skip_special_tokens=True)

print("Generated Text: ", generated_text)

# Load and compute the perplexity score
perplexity = ____("perplexity", module_type="metric")
results = ____(model_id="gpt2", predictions=____)
print("Perplexity: ", results['mean_perplexity'])
Editar e executar código