Este exercício faz parte do curso
Comece sua jornada explorando os conceitos fundamentais da IA explicável. Saiba como extrair regras de decisão de árvores de decisão. Derive e visualize a importância dos recursos usando modelos lineares e baseados em árvores para obter insights sobre como esses modelos fazem previsões, permitindo uma tomada de decisão mais transparente.
Desbloqueie o poder das técnicas independentes de modelo para discernir a influência de recursos em vários modelos. Empregue a importância da permutação e os valores de SHAP para analisar como os recursos afetam o comportamento do modelo. Explore as ferramentas de visualização do SHAP para tornar os conceitos de explicabilidade mais compreensíveis.
Mergulhe na explicabilidade local e explique as previsões individuais. Aprenda a aproveitar o SHAP para obter explicações locais. Domine LIME para revelar os fatores específicos que influenciam resultados únicos, seja por meio de dados textuais, tabulares ou de imagem.
Exercício atual
Explore tópicos avançados em IA explicável, avaliando os comportamentos do modelo e a eficácia dos métodos de explicação. Você terá a capacidade de avaliar a consistência e a fidelidade das explicações, aprofundar-se na análise de modelos não supervisionados e aprender a esclarecer os processos de raciocínio de modelos de IA generativos, como o ChatGPT. Você terá acesso a técnicas para medir e aprimorar a explicabilidade em sistemas complexos de IA.